Poincaré inequalities in dimension 1. Applications to sensitivity analysis.

Summer school "Global sensitivity analysis and Poincaré inequalities" 6-8 July 2022

Olivier Roustant INSA Toulouse & IMT

This talk is based on various works, including collaborations with F. Barthe, F. Gamboa (IMT), B. looss (EDF & IMT), N. Lüthen, S. Marelli and B. Sudret (ETH).

Part I

Poincaré inequalities in dimension 1.

2/19

Here we present the paper written with F. Barthe and B. looss [Roustant et al., 2017], in a specific slide show [download].

Part II

Complements: Poincaré basis, Poincaré chaos

Poincaré basis

Consider the spectral decomposition associated to the Poincaré inequalities. The eigenfunctions (e_n) define a Hilbert basis of $L^2(\mu_1)$, called *Poincaré basis*.

Caracterization of Poincaré basis [Lüthen et al., 2021]

Under our assumption on μ_1 , the Poincaré basis is the only orthonormal basis of $L^2(\mu_1)$ in $H^1(\mu_1)$ such that its derivative (e'_n) also form an orthogonal basis.

In particular, the derivative of the Poincaré basis is an orthogonal system:

$$\langle e_m', e_n' \rangle = \lambda_n \langle e_m, e_n \rangle = \lambda_n \delta_{n,m}$$

The proposition above states that it remains dense in $L^2(\mu_1)$, and that the Poincaré basis is the only one to do this.

Direct sense.

- We already mentionned that (e'_n) remains an orthogonal system.
- Let us check that (e'_n) is *dense* in $L^2(\mu)$, by showing that its orthogonal space is null.

Direct sense.

- We already mentionned that (e'_n) remains an orthogonal system.
- Let us check that (e'_n) is *dense* in $L^2(\mu)$, by showing that its orthogonal space is null. Let $f \in L^2(\mu)$ s.t.

$$\langle f, e'_n \rangle = 0 \quad \forall n \in \mathbb{N}.$$

Direct sense.

- We already mentionned that (e'_n) remains an orthogonal system.
- Let us check that (e'_n) is *dense* in $L^2(\mu)$, by showing that its orthogonal space is null. Let $f \in L^2(\mu)$ s.t.

$$\langle f, e'_n \rangle = 0 \qquad \forall n \in \mathbb{N}.$$

As $f \in L^2(\mu) = L^2(a,b)$, $\exists g \in H^1(a,b) = H^1(\mu)$ such that f = g', with:

$$g(x) = g(a) + \int_a^x f(t)dt.$$

Direct sense.

- We already mentionned that (e'_n) remains an orthogonal system.
- Let us check that (e'_n) is *dense* in $L^2(\mu)$, by showing that its orthogonal space is null. Let $f \in L^2(\mu)$ s.t.

$$\langle f, e'_n \rangle = 0 \qquad \forall n \in \mathbb{N}.$$

As $f \in L^2(\mu) = L^2(a,b)$, $\exists g \in H^1(a,b) = H^1(\mu)$ such that f = g', with:

$$g(x) = g(a) + \int_a^x f(t)dt.$$

Therefore, we have:

$$\langle g, e_n \rangle = \frac{1}{\lambda_n} \langle g', e'_n \rangle = 0 \qquad \forall n \geq 1$$

Direct sense.

- We already mentionned that (e'_n) remains an orthogonal system.
- Let us check that (e'_n) is *dense* in $L^2(\mu)$, by showing that its orthogonal space is null. Let $f \in L^2(\mu)$ s.t.

$$\langle f, e'_n \rangle = 0 \quad \forall n \in \mathbb{N}.$$

As $f \in L^2(\mu) = L^2(a, b)$, $\exists g \in H^1(a, b) = H^1(\mu)$ such that f = g', with:

$$g(x) = g(a) + \int_a^x f(t)dt.$$

Therefore, we have:

$$\langle g, e_n \rangle = \frac{1}{\lambda_n} \langle g', e'_n \rangle = 0 \qquad \forall n \geq 1$$

This implies that g is proportional to $e_0 = 1$, thus f = 0.

Reverse sense, unicity of the basis.

• Let (φ_n) a system of $H^1(\mu)$ with $\varphi_0 = 1$. Assume that (φ_n) is an orthonormal basis of $L^2(\mu)$ and $(\varphi'_n)_{n\geq 1}$ is an orthogonal basis of $L^2(\mu)$.

- Let (φ_n) a system of $H^1(\mu)$ with $\varphi_0 = 1$. Assume that (φ_n) is an orthonormal basis of $L^2(\mu)$ and $(\varphi'_n)_{n\geq 1}$ is an orthogonal basis of $L^2(\mu)$.
- Notice that (φ_n) is an orthogonal basis of $H^1(\mu)$.

- Let (φ_n) a system of $H^1(\mu)$ with $\varphi_0 = 1$. Assume that (φ_n) is an orthonormal basis of $L^2(\mu)$ and $(\varphi'_n)_{n\geq 1}$ is an orthogonal basis of $L^2(\mu)$.
- Notice that (φ_n) is an orthogonal basis of $H^1(\mu)$.
 - ▶ Orthogonal by assumption: $\langle \varphi_n, \varphi_m \rangle_{H^1(\mu)} = \langle \varphi_n, \varphi_m \rangle + \langle \varphi'_n, \varphi'_m \rangle \propto \delta_{n,m}$.

- Let (φ_n) a system of $H^1(\mu)$ with $\varphi_0 = 1$. Assume that (φ_n) is an orthonormal basis of $L^2(\mu)$ and $(\varphi'_n)_{n\geq 1}$ is an orthogonal basis of $L^2(\mu)$.
- Notice that (φ_n) is an orthogonal basis of $H^1(\mu)$.
 - ▶ Orthogonal by assumption: $\langle \varphi_n, \varphi_m \rangle_{H^1(\mu)} = \langle \varphi_n, \varphi_m \rangle + \langle \varphi'_n, \varphi'_m \rangle \propto \delta_{n,m}$.
 - ▶ Dense by integrating (use again the assumption on μ): $f' = \sum_n \alpha_n \varphi'_n$.

- Let (φ_n) a system of $H^1(\mu)$ with $\varphi_0 = 1$. Assume that (φ_n) is an orthonormal basis of $L^2(\mu)$ and $(\varphi'_n)_{n\geq 1}$ is an orthogonal basis of $L^2(\mu)$.
- Notice that (φ_n) is an orthogonal basis of $H^1(\mu)$.
 - Orthogonal by assumption: $\langle \varphi_n, \varphi_m \rangle_{H^1(\mu)} = \langle \varphi_n, \varphi_m \rangle + \langle \varphi'_n, \varphi'_m \rangle \propto \delta_{n,m}$.
 - ▶ Dense by integrating (use again the assumption on μ): $f' = \sum_{n} \alpha_{n} \varphi'_{n}$.
- For a given $n \in \mathbb{N}^*$, consider the (continuous) linear form

$$f \in H^1(\mu) \to \langle f', \varphi'_n \rangle.$$

Reverse sense, unicity of the basis.

- Let (φ_n) a system of $H^1(\mu)$ with $\varphi_0 = 1$. Assume that (φ_n) is an orthonormal basis of $L^2(\mu)$ and $(\varphi'_n)_{n\geq 1}$ is an orthogonal basis of $L^2(\mu)$.
- Notice that (φ_n) is an orthogonal basis of $H^1(\mu)$.
 - ▶ Orthogonal by assumption: $\langle \varphi_n, \varphi_m \rangle_{H^1(\mu)} = \langle \varphi_n, \varphi_m \rangle + \langle \varphi'_n, \varphi'_m \rangle \propto \delta_{n,m}$.
 - ▶ Dense by integrating (use again the assumption on μ): $f' = \sum_{n} \alpha_{n} \varphi'_{n}$.
- For a given $n \in \mathbb{N}^*$, consider the (continuous) linear form

$$f \in H^1(\mu) \to \langle f', \varphi'_n \rangle.$$

By Riesz theorem, there exists a unique $\zeta_n \in H^1(\mu)$ such that

$$\forall f \in H^1(\mu), \qquad \langle f', \varphi'_n \rangle = \langle f, \zeta_n \rangle_{H^1(\mu)}$$

Reverse sense, unicity of the basis.

- Let (φ_n) a system of $H^1(\mu)$ with $\varphi_0 = 1$. Assume that (φ_n) is an orthonormal basis of $L^2(\mu)$ and $(\varphi'_n)_{n\geq 1}$ is an orthogonal basis of $L^2(\mu)$.
- Notice that (φ_n) is an orthogonal basis of $H^1(\mu)$.
 - ▶ Orthogonal by assumption: $\langle \varphi_n, \varphi_m \rangle_{H^1(\mu)} = \langle \varphi_n, \varphi_m \rangle + \langle \varphi'_n, \varphi'_m \rangle \propto \delta_{n,m}$.
 - ▶ Dense by integrating (use again the assumption on μ): $f' = \sum_{n} \alpha_{n} \varphi'_{n}$.
- For a given $n \in \mathbb{N}^*$, consider the (continuous) linear form

$$f \in H^1(\mu) \to \langle f', \varphi'_n \rangle.$$

By Riesz theorem, there exists a unique $\zeta_n \in H^1(\mu)$ such that

$$\forall f \in H^1(\mu), \qquad \langle f', \varphi'_n \rangle = \langle f, \zeta_n \rangle_{H^1(\mu)}$$

With $f = \varphi_m$, $(m \neq n)$, by density of $(\varphi_n) \in H^1(\mu)$, we get $\zeta_n \propto \varphi_n$. With $f = \varphi_n$, we get $\langle f', \varphi'_n \rangle = \lambda_n \langle f, \varphi_n \rangle$, and $(\varphi_n)_n$ is the Poincaré basis.

Computation of Poincaré constant and basis

- By finite elements (FE) in 1D (or 2D). [Roustant et al., 2017] If V is of class C^k (with $d\mu_1(x) = e^{-V(x)}dx$), then with n knots for FE:
 - ► Convergence of estimated eigenvalues at the speed $1/n^{2(k+1)}$
 - Convergence of estimated eigenfunctions at the speed 1/n^{k+1}
- For any dimension, it is possible to estimate the Poincaré constant from a sample of μ (any dim.), by using a RKHS dense in $H^1(\mu)$. [Pillaud-Vivien et al., 2019]
 - ▶ Convergence at the speed $1/\sqrt{n}$, where *n* is the sample size

Remark. Both methods involve a eigen decomposition of a matrix of size $n \Rightarrow n \le 10000$

Illustrations

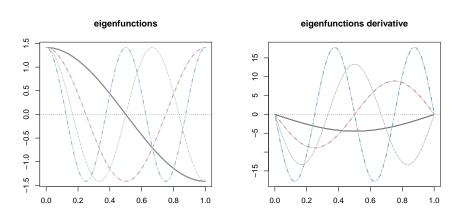


Figure: Estimated first eigenfunctions and their derivatives for the *uniform* pdf on [0,1]. The superimposed grey solid lines are the true curves, cor. to $e_n(x) = \sqrt{2} \cos\left(\frac{2\pi nx}{2}\right)$.

Illustrations

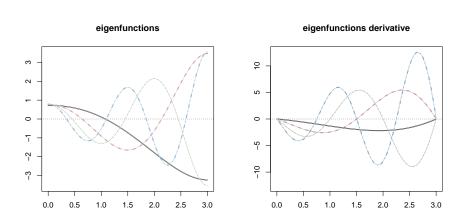


Figure: Estimated first eigenfunctions and their derivatives for the *exp.* pdf $\mathcal{E}(1)$, truncated on [0,3]. The superimposed grey solid lines are the true curves.

Illustrations

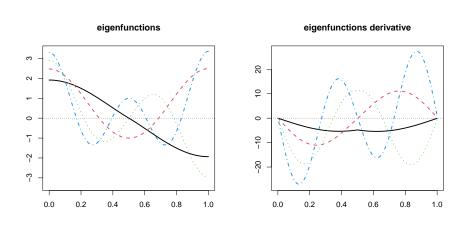


Figure: Estimated first eigenfunctions and their derivatives for the *triangle* pdf on [0, 1]. Software used: sensitivity R package [looss et al., 2021].

For all j, let $e_{j,0} = 1, e_{j,1}, \dots, e_{j,n_j-1}$ be orthonormal functions in $L^2(\mu_j)$. We call *generalized chaos* a tensor of the form:

$$e_{\underline{\ell}}(x) = \prod_{j=1}^d e_{j,\ell_j}(x_j)$$

where $\underline{\ell} = (\ell_1, \dots, \ell_d)$ is a multi-index.

When the $e_{...}$ are (orthonormal) polynomials, we recover *polynomial chaos*.

For all j, let $e_{j,0} = 1, e_{j,1}, \dots, e_{j,n_j-1}$ be orthonormal functions in $L^2(\mu_j)$. We call *generalized chaos* a tensor of the form:

$$e_{\underline{\ell}}(x) = \prod_{j=1}^d e_{j,\ell_j}(x_j)$$

where $\underline{\ell} = (\ell_1, \dots, \ell_d)$ is a multi-index.

When the $\dot{e}_{...}$ are (orthonormal) polynomials, we recover *polynomial chaos*.

Property

For any centered function h, denote $\underline{c_\ell} = \langle h, \underline{e_\ell} \rangle$. Then $h = \sum_\ell \underline{c_\ell} \underline{e_\ell}$, and:

For all j, let $e_{j,0} = 1, e_{j,1}, \dots, e_{j,n_j-1}$ be orthonormal functions in $L^2(\mu_j)$. We call *generalized chaos* a tensor of the form:

$$e_{\underline{\ell}}(x) = \prod_{j=1}^d e_{j,\ell_j}(x_j)$$

where $\underline{\ell} = (\ell_1, \dots, \ell_d)$ is a multi-index.

When the $e_{.,.}$ are (orthonormal) polynomials, we recover *polynomial chaos*.

Property

For any centered function h, denote $\underline{c_\ell} = \langle h, \underline{e_\ell} \rangle$. Then $h = \sum_{\underline{\ell}} \underline{c_\ell} \underline{e_\ell}$, and:

$$h_1 = \sum_{\ell_1 \geq 1 \ell_2 = 0, \dots, \ell_d = 0} c_{\underline{\ell}} e_{\underline{\ell}},$$

For all j, let $e_{j,0} = 1, e_{j,1}, \dots, e_{j,n_j-1}$ be orthonormal functions in $L^2(\mu_j)$. We call *generalized chaos* a tensor of the form:

$$e_{\underline{\ell}}(x) = \prod_{j=1}^d e_{j,\ell_j}(x_j)$$

where $\underline{\ell} = (\ell_1, \dots, \ell_d)$ is a multi-index.

When the $e_{.,.}$ are (orthonormal) polynomials, we recover *polynomial chaos*.

Property

For any centered function h, denote $\underline{c_\ell} = \langle h, \underline{e_\ell} \rangle$. Then $h = \sum_\ell \underline{c_\ell} \underline{e_\ell}$, and:

$$h_1 = \sum_{\ell_1 \geq 1\ell_2 = 0, \dots, \ell_d = 0} c_{\underline{\ell}} e_{\underline{\ell}}, \qquad D_1(h) = \sum_{\ell_1 \geq 1\ell_2 = 0, \dots, \ell_d = 0} c_{\underline{\ell}}^2$$

For all j, let $e_{j,0} = 1, e_{j,1}, \dots, e_{j,n_j-1}$ be orthonormal functions in $L^2(\mu_j)$. We call *generalized chaos* a tensor of the form:

$$e_{\underline{\ell}}(x) = \prod_{j=1}^d e_{j,\ell_j}(x_j)$$

where $\underline{\ell} = (\ell_1, \dots, \ell_d)$ is a multi-index.

When the $e_{.,.}$ are (orthonormal) polynomials, we recover *polynomial chaos*.

Property

For any centered function h, denote $\underline{c_\ell} = \langle h, \underline{e_\ell} \rangle$. Then $h = \sum_\ell \underline{c_\ell} \underline{e_\ell}$, and:

$$\begin{split} h_1 &= \sum_{\ell_1 \geq 1\ell_2 = 0, \dots, \ell_d = 0} c_{\underline{\ell}} \, e_{\underline{\ell}}, \qquad \quad D_1(h) = \sum_{\ell_1 \geq 1\ell_2 = 0, \dots, \ell_d = 0} c_{\underline{\ell}}^2 \\ h_1^{tot} &= \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} c_{\underline{\ell}} \, e_{\underline{\ell}}, \qquad \quad D_1^{tot}(h) = \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} c_{\underline{\ell}}^2 \end{split}$$

Poincaré chaos expansions, application to sensitivity analysis

Define the Poincaré expansion (PoinCE) as the chaos expansion obtained with *the Poincaré basis*.

Properties (variance-based indices with Poincaré chaos)

For all h in $H^1(\mu)$, we can rewrite (total) Sobol indices with derivatives:

$$\begin{split} D_1(h) &= \sum_{\ell_1 \geq 1} \langle h, e_{1,\ell_1} \rangle^2 = \sum_{\ell_1 \geq 1} \frac{1}{\lambda_{1,\ell_1}^2} \langle \frac{\partial h}{\partial x_1}, e_{1,\ell_1}' \rangle^2. \\ D_1^{tot}(h) &= \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \langle h, e_{1,\ell_1} \dots e_{d,\ell_d} \rangle^2 \\ &= \sum_{\ell_1 > 1, \ell_2, \dots, \ell_d} \frac{1}{\lambda_{1,\ell_1}^2} \langle \frac{\partial h}{\partial x_1}, e_{1,\ell_1}' e_{2,\ell_2} \dots e_{d,\ell_d} \rangle^2. \end{split}$$

When using derivatives?

Consider a squared integral $\theta = (\int g(x)d\mu(x))^2$, when g is equal to:

$$g_{\text{dir}} = h\phi_1, h\phi_1\phi_j, \dots$$
 or $g_{\text{der}} = \frac{\partial h}{\partial x_1}\psi_1, \frac{\partial h}{\partial x_1}\psi_1\phi_j, \dots$

for some functions $\phi_i, \phi_j, \psi_1, \ldots$

When using derivatives?

Consider a squared integral $\theta = (\int g(x)d\mu(x))^2$, when g is equal to:

$$g_{\text{dir}} = h\phi_1, h\phi_1\phi_j, \dots$$
 or $g_{\text{der}} = \frac{\partial h}{\partial x_1}\psi_1, \frac{\partial h}{\partial x_1}\psi_1\phi_j, \dots$

for some functions $\phi_i, \phi_j, \psi_1, \ldots$

The reason why we should compute θ with / without derivatives is <u>numerical</u>. The sample estimate $\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} g(X^{i})\right)^{2}$, with X^{1}, \dots, X^{n} i.i.d. $\sim \mu$, verifies:

$$\hat{ heta} pprox \mathcal{N}\left(heta, rac{4 heta}{n} \mathrm{Var}_{\mu}(oldsymbol{g})
ight)$$

Hence, for one squared integral, using the derivative form can reduce estimation error when g_{der} is less variable than g_{dir} .

Poincaré chaos expansions, application to sensitivity analysis

Property (derivative-based sensitivity measure with DGSM)

For all h in $H^1(\mu)$, DGSM can be computed with the Poincaré basis coef.:

$$\nu_1(h) = \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \lambda_{1,\ell_1} \langle h, e_{\underline{\ell}} \rangle^2 = \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \frac{1}{\lambda_{1,\ell_1}} \langle \frac{\partial h}{\partial x_1}, e'_{1,\ell_1} e_{2,\ell_2} \dots e_{d,\ell_d} \rangle^2.$$

$$\underline{\text{Proof:}} \quad \nu_1(h) \quad = \quad \left\| \frac{\partial h}{\partial x_1} \right\|^2 = \left\| \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \langle h, e_{\underline{\ell}} \rangle \frac{\partial e_{\underline{\ell}}}{\partial x_1} \right\|^2 = \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \langle h, e_{\underline{\ell}} \rangle^2 \left\| \frac{\partial e_{\underline{\ell}}}{\partial x_1} \right\|^2$$

Poincaré chaos expansions, application to sensitivity analysis

Property (derivative-based sensitivity measure with DGSM)

For all h in $H^1(\mu)$, DGSM can be computed with the Poincaré basis coef.:

$$\nu_1(h) = \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \lambda_{1,\ell_1} \langle h, e_{\underline{\ell}} \rangle^2 = \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \frac{1}{\lambda_{1,\ell_1}} \langle \frac{\partial h}{\partial x_1}, e'_{1,\ell_1} e_{2,\ell_2} \dots e_{d,\ell_d} \rangle^2.$$

$$\underline{\text{Proof:}} \quad \nu_1(h) \quad = \quad \left\| \frac{\partial h}{\partial x_1} \right\|^2 = \left\| \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \langle h, e_{\underline{\ell}} \rangle \frac{\partial e_{\underline{\ell}}}{\partial x_1} \right\|^2 = \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \langle h, e_{\underline{\ell}} \rangle^2 \left\| \frac{\partial e_{\underline{\ell}}}{\partial x_1} \right\|^2$$

Remark:
$$\nu_1(h) \geq \lambda_{1,1} \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \langle h, e_{\underline{\ell}} \rangle^2 = \frac{1}{C(\mu_1)} D_1^{\text{tot}}(h)$$

Hence we retrieve the upper bound: $D_1^{\text{tot}}(h) \leq C(\mu_1)\nu_1(h)$

Poincaré chaos expansion (PoinCE) vs polynomial chaos exp. (PCE)

On the flood model, using derivatives with PoinCE gives more accurate results especially for small indices, and outperforms PCE [Lüthen et al., 2021]

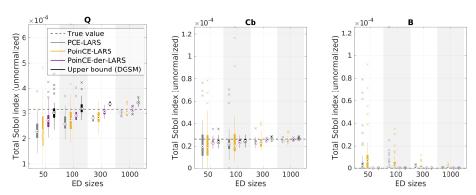


Figure: Estimates of unnormalized total Sobol' indices for the flood cost model, via sparse regression. Software used: UQLab [Marelli and Sudret, 2014].

Part III

Conclusion and perspectives

Some conclusions

- Poincaré inequalities give an upper bound of Sobol indices with DGSM
- A Poincaré basis remains an orthogonal basis by derivation (and is the only one to do so).
 - Particular cases: Hermite polynomials for the Normal distribution, a kind of Fourier basis for the uniform distribution.
 - Efficient numerical method based on finite elements.
- Poincaré chaos give simple expressions for Sobol indices and DGSM, as a sum of (weighted) squared, involving (or not) derivatives
- Using derivatives for sensitivity analysis is very efficient for screening, provided the function is smooth. Couterexample: oscillations!

Perspectives

- Use the derivative information to build the chaos expansion
- Extension to 2D problems, assuming independence of pairs of variables
 - → Attend the PhD defense of Clément Steiner to learn more!
- Active subspaces
 - → See the course of Clémentine Prieur in this summer school

looss, B., Veiga, S. D., Janon, A., and Pujol, G. (2021). sensitivity: Global Sensitivity Analysis of Model Outputs. R package version 1.25.0.

Lüthen, N., Roustant, O., Gamboa, F., Iooss, B., Marelli, S., and Sudret, B. (2021). Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions.

Marelli, S. and Sudret, B. (2014).

UQLab: A framework for uncertainty quantification in Matlab.

In Vulnerability, Uncertainty, and Risk (Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, United Kingdom), pages 2554–2563.

Pillaud-Vivien, L., Bach, F., Lelièvre, T., Rudi, A., and Stoltz, G. (2019).

Statistical estimation of the poincaré constant and application to sampling multimodal distributions.

Roustant, O., Barthe, F., and looss, B. (2017).

Poincaré inequalities on intervals - application to sensitivity analysis. *Electron. J. Statist.*, 11(2):3081–3119.