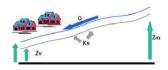
Sensitivity analysis with generalized chaos expansion

Olivier Roustant 1,2, Fabrice Gamboa^{2,4}, Bertrand looss^{2,3}

¹ INSA Toulouse
 ² Institut de Mathématiques de Toulouse
 ³ Electricité de France
 ⁴ ANITI Artificial and Natural Intelligence Toulouse Institute

Updated slide show, following talks at SAMO 2019 conference, and at INRAE seminars. Thanks to all the participants for their feedback!

An illustrative case study



A simplified flood model [looss, 2011], [looss and Lemaitre, 2015].

Output: cost (in million euros) of the damage on the dyke

$$Y = 1_{S>0} + \left[0.2 + 0.8\left(1 - \exp^{-\frac{1000}{S^4}}\right)\right] 1_{S\leq 0} + \frac{1}{20}\left(H_d 1_{H_d>8} + 81_{H_d\leq 8}\right)$$

where H is the maximal annual height of the river (in meters), and S is the maximal annual overflow (in meters)

$$S = Z_v + H - H_d - C_b$$
 with $H = \left(rac{Q}{BK_s\sqrt{rac{Z_m-Z_v}{L}}}
ight)^{0.6}$

An illustrative case study

• 8 inputs variables assumed to be independent r.v., with distributions:

Input	Description	Unit	Probability distribution
$X_1 = Q$	Maximal annual flowrate	m ³ /s	Gumbel $G(1013, 558)$,
			truncated on [500, 3000]
$X_2 = K_s$	Strickler coefficient	-	Normal $\mathcal{N}(30, 8^2)$,
			truncated on $[15, +\infty[$
$X_3 = Z_v$	River downstream level	m	Triangular $\mathcal{T}(49, 50, 51)$
$X_4 = Z_m$	River upstream level	m	Triangular $\mathcal{T}(54, 55, 56)$
$X_5 = H_d$	Dyke height	m	Uniform $\mathcal{U}[7,9]$
$X_6 = C_b$	Bank level	m	Triangular $T(55, 55.5, 56)$
$X_7 = L$	River stretch	m	Triangular $\mathcal{T}(4990, 5000, 5010)$
$X_8 = B$	River width	m	Triangular $\mathcal{T}(295, 300, 305)$

The aim

The aim is to quantify the influence of the 8 inputs $X = (X_1, ..., X_8)$ on the output $Y = h(X) \Rightarrow$ Global sensitivity analysis

Specificities:

- h is costly-to-evaluate
- The gradient of h is provided (or easy-to-compute)

Summary

- With polynomial chaos, i.e. tensor of orthonormal polynomials, (total)
 Sobol indices are infinite sums of squares of coefficients
 - Sharp lower bounds are obtained by truncation (with equality cases)

Summary

- With polynomial chaos, i.e. tensor of orthonormal polynomials, (total)
 Sobol indices are infinite sums of squares of coefficients
 - ► Sharp lower bounds are obtained by truncation (with equality cases)
- The same is true for general tensors of orthonormal functions
 - Generalized chaos expansion

Summary

- With polynomial chaos, i.e. tensor of orthonormal polynomials, (total)
 Sobol indices are infinite sums of squares of coefficients
 - Sharp lower bounds are obtained by truncation (with equality cases)
- The same is true for general tensors of orthonormal functions
 - Generalized chaos expansion
- When derivatives are available, we choose the orthonormal basis as the eigenfunctions of the Poincaré differential operator (PDO)
 - ► PDO expansion
 - Sobol indices lower bounds are immediately rewritten with derivatives

Part I

Context and notations

Sobol-Hoeffding decomposition

Framework. $X = (X_1, \dots, X_d)$ is a vector of independent input variables with distribution $\mu_1 \otimes \dots \otimes \mu_d$, and $h : \Delta \subseteq \mathbb{R}^d \to \mathbb{R}$ is such that $h(X) \in L^2(\mu)$.

Sobol-Hoeffding decomposition

Framework. $X = (X_1, \dots, X_d)$ is a vector of independent input variables with distribution $\mu_1 \otimes \dots \otimes \mu_d$, and $h : \Delta \subseteq \mathbb{R}^d \to \mathbb{R}$ is such that $h(X) \in L^2(\mu)$.

Theorem [Hoeffding, 1948, Efron and Stein, 1981, Sobol', 1993]

There exists a unique expansion of h of the form

$$h(X) = h_0 + \sum_{i=1}^d h_i(X_i) + \sum_{1 \leq i < j \leq d} h_{i,j}(X_i, X_j) + \cdots + h_{1,...,d}(X_1, ..., X_d)$$

such that $E[h_I(X_I)|X_J]=0$ for all $I\subseteq\{1,\ldots,d\}$ and all $J\subsetneq I$.

Sobol-Hoeffding decomposition

Framework. $X = (X_1, \dots, X_d)$ is a vector of independent input variables with distribution $\mu_1 \otimes \dots \otimes \mu_d$, and $h : \Delta \subseteq \mathbb{R}^d \to \mathbb{R}$ is such that $h(X) \in L^2(\mu)$.

Theorem [Hoeffding, 1948, Efron and Stein, 1981, Sobol', 1993]

There exists a unique expansion of h of the form

$$h(X) = h_0 + \sum_{i=1}^d h_i(X_i) + \sum_{1 \leq i < j \leq d} h_{i,j}(X_i, X_j) + \cdots + h_{1,...,d}(X_1, ..., X_d)$$

such that $E[h_I(X_I)|X_J]=0$ for all $I\subseteq\{1,\ldots,d\}$ and all $J\subsetneq I$. Moreover:

$$\begin{array}{rcl} h_0 & = & \mathbb{E}[h(X)] \\ h_i(X_i) & = & \mathbb{E}[h(X)|X_i] - h_0 \\ h_l(X_l) & = & \mathbb{E}[h(X)|X_l] - \sum_{J \subsetneq l} h_J(X_J) & \text{(recursion)} \\ & = & \sum_{J \subseteq l} (-1)^{|I| - |J|} \mathbb{E}[h(X)|X_J] & \text{(inclusion-exclusion)} \end{array}$$

Variance decomposition

The non-overlapping condition

$$\mathbb{E}[h_I(X_I)|X_J] = 0$$
 for all $J \subsetneq I$

avoids one term to be considered as a more complex one.

Variance decomposition

The non-overlapping condition

$$\mathbb{E}[h_I(X_I)|X_J] = 0$$
 for all $J \subsetneq I$

avoids one term to be considered as a more complex one.

• It implies that $h_I(X_I)$ is orthogonal to $L^2(X_J)$ such that $J \cap I \subsetneq I$:

$$\begin{split} \mathbb{E}[h_I(X_I)h(X_J)] &= & \mathbb{E}[\mathbb{E}[h_I(X_I)h_J(X_J)|X_J]] \\ &= & \mathbb{E}[h(X_J)\mathbb{E}[h_I(X_I)|X_{J\cap I}]] = 0 \end{split}$$

Variance decomposition

The non-overlapping condition

$$\mathbb{E}[h_I(X_I)|X_J] = 0$$
 for all $J \subsetneq I$

avoids one term to be considered as a more complex one.

• It implies that $h_I(X_I)$ is orthogonal to $L^2(X_J)$ such that $J \cap I \subsetneq I$:

$$\mathbb{E}[h_I(X_I)h(X_J)] = \mathbb{E}[\mathbb{E}[h_I(X_I)h_J(X_J)|X_J]]$$
$$= \mathbb{E}[h(X_J)\mathbb{E}[h_I(X_I)|X_{J\cap I}]] = 0$$

In particular the decomposition is orthogonal (ANOVA):

$$D := \operatorname{Var}(h(X)) = \sum_{I \subseteq \{1, \dots, d\}} \operatorname{Var}(h_I(X_I))$$

Sensitivity indices

Sobol indices

• Partial variances: $D_l = Var(h_l(X_l))$, and Sobol indices $S_l = D_l/D$

$$D = \sum_{I} D_{I}$$

$$1=\sum_{l}S_{l}$$

•
$$D_i^{\text{tot}} = \sum_{J\supseteq\{i\}} D_J$$
,
• $D_I^{\text{tot}} = \sum_{J\supseteq\{I\}} D_J$,

$$S_i^{ ext{tot}} = \frac{D_i^{ ext{tot}}}{D}$$

Total index

$$\mathcal{S}_I^{\mathsf{tot}} = rac{D_I^{\mathsf{tot}}}{D}$$

Total interaction, superset importance

Sensitivity indices

Sobol indices

• Partial variances: $D_I = Var(h_I(X_I))$, and Sobol indices $S_I = D_I/D$

$$D = \sum_{I} D_{I}, \qquad 1 = \sum_{I} S_{I}$$

- $D_i^{ ext{tot}} = \sum_{J\supseteq\{i\}} D_J, \qquad \quad S_i^{ ext{tot}} = \frac{D_i^{ ext{tot}}}{D} \qquad \quad \textit{Total index}$
- $D_I^{ ext{tot}} = \sum_{J\supseteq\{I\}} D_J, \qquad \qquad S_I^{ ext{tot}} = rac{D_I^{ ext{tot}}}{D} \qquad ext{ Total interaction, superset importance}$

Derivative Global Sensitivity Measure (DGSM)

$$u_l = \int \left(\frac{\partial h(x)}{\partial x_l}\right)^2 d\mu(x), \qquad \quad \nu_l = \int \left(\frac{\partial^{|I|} h(x)}{\partial x_l}\right)^2 d\mu(x)$$

Usage for screening

Assume that:

- h is continuous on $\Delta = [0, 1]^d$
- for all i, the support of μ_i contains [0, 1]
- Variable screening

If either $D_i^{tot} = 0$ or $v_i = 0$, then X_i is non influential

Usage for screening

Assume that:

- h is continuous on $\Delta = [0, 1]^d$
- for all i, the support of μ_i contains [0, 1]
- Variable screening

If either $D_i^{tot} = 0$ or $\nu_i = 0$, then X_i is non influential

Interaction screening

If either
$$D_{i,j}^{tot} = 0$$
 or $\nu_{i,j} = 0$, then $(x_i, x_j) \mapsto h(x)$ is additive

Total interactions can be visualized on the *FANOVA graph*, where the edge size is proportionnal to the index value.

8D g-Sobol function, with uniform inputs on [0, 1]:

$$h(x) = \prod_{j=1}^{8} \frac{|4x_j - 2| + a_j}{1 + a_j}$$

with a = c(0, 1, 4.5, 9, 99, 99, 99, 99).

8D g-Sobol function, with uniform inputs on [0, 1]:

$$h(x) = \prod_{j=1}^{8} \frac{|4x_j - 2| + a_j}{1 + a_j}$$

with a = c(0, 1, 4.5, 9, 99, 99, 99, 99).

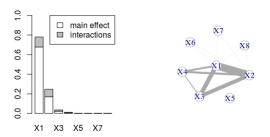


Figure: 1st order analysis (left) and 2nd order analysis (right) with 10⁵ simulated data

A 6D block-additive function, with uniform inputs on [-1, 1]:

$$h(x) = \cos([1, x_1, x_2, x_3]^{\top}\beta) + \sin([1, x_4, x_5, x_6]^{\top}\gamma))$$

with
$$\beta = (-0.8, -1.1, 1.1, 1)^{\top}$$
 and $\gamma = (-0.5, 0.9, 1, -1.1)^{\top}$.

A 6D block-additive function, with uniform inputs on [-1, 1]:

$$h(x) = \cos([1, x_1, x_2, x_3]^{\top}\beta) + \sin([1, x_4, x_5, x_6]^{\top}\gamma))$$

with $\beta = (-0.8, -1.1, 1.1, 1)^{\top}$ and $\gamma = (-0.5, 0.9, 1, -1.1)^{\top}$.

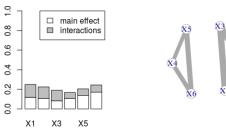


Figure: 1st order analysis (left) and 2nd order analysis (right) with 10⁵ simulated data

Reminder: μ satisfies a Poincaré inequality if for all h in $L^2(\mu)$ such that $\int h(x)d\mu(x) = 0$, and $h'(x) \in L^2(\mu)$:

$$\int h(x)^2 d\mu(x) \leq C(\mu) \int h'(x)^2 d\mu(x)$$

ightarrow Optimal values of $\mathcal{C}(\mu)$ have been investigated in [Roustant et al., 2017]

Reminder: μ satisfies a Poincaré inequality if for all h in $L^2(\mu)$ such that $\int h(x)d\mu(x) = 0$, and $h'(x) \in L^2(\mu)$:

$$\int h(x)^2 d\mu(x) \leq C(\mu) \int h'(x)^2 d\mu(x)$$

 \rightarrow Optimal values of $C(\mu)$ have been investigated in [Roustant et al., 2017]

Theorem [Lamboni et al., 2013]

The total Sobol index is bounded with DGSM, thanks to a Poincaré inequality:

$$\underbrace{D_i^{\text{tot}}}_{\text{interpretable but costly}} \leq \underbrace{C(\mu_i)}_{\text{Poincaré constant}} \times \underbrace{\int_{\mathbb{R}^d} \left(\frac{\partial h}{\partial x_i}(x)\right)^2 \mu(dx)}_{\text{economical but less interpretable}}$$

Actually, the same tool can be used to obtain lower bounds on Sobol indices! As for matricial problems, the minimum of the Rayleigh ratio (s.t. $\int h d\mu = 0$)

$$\frac{\int h'(x)^2 d\mu(x)}{\int h(x)^2 d\mu(x)} = \frac{\|h'\|^2}{\|h\|^2}$$

is given by the smallest eigenvalue of a spectral problem.

Actually, the same tool can be used to obtain lower bounds on Sobol indices! As for matricial problems, the minimum of the Rayleigh ratio (s.t. $\int h d\mu = 0$)

$$\frac{\int h'(x)^2 d\mu(x)}{\int h(x)^2 d\mu(x)} = \frac{\|h'\|^2}{\|h\|^2}$$

is given by the smallest eigenvalue of a spectral problem. More precisely, if μ_1 has density $\exp(-V)$ on a bounded interval [a, b], then $\exists (\lambda_n, e_n)_{n \geq 0}$ s.t. $\forall h$:

$$\langle h', e'_n \rangle = \lambda_n \langle h, e_n \rangle$$
 (*)

with
$$0 < \lambda_1 = \frac{1}{C(\mu_1)} < \lambda_2 < \dots < \lambda_n \to +\infty$$
.

Actually, the same tool can be used to obtain lower bounds on Sobol indices! As for matricial problems, the minimum of the Rayleigh ratio (s.t. $\int h d\mu = 0$)

$$\frac{\int h'(x)^2 d\mu(x)}{\int h(x)^2 d\mu(x)} = \frac{\|h'\|^2}{\|h\|^2}$$

is given by the smallest eigenvalue of a spectral problem. More precisely, if μ_1 has density $\exp(-V)$ on a bounded interval [a, b], then $\exists (\lambda_n, e_n)_{n \geq 0}$ s.t. $\forall h$:

$$\langle h', e'_n \rangle = \lambda_n \langle h, e_n \rangle \qquad (\star)$$

with $0 < \lambda_1 = \frac{1}{C(\mu_1)} < \lambda_2 < \cdots < \lambda_n \to +\infty$.

Poincaré differential operator (PDO)

The underlying operator is Lh = h'' - V'h', and solving (*) is equivalent to

$$Lh = -\lambda h$$
, with $h'(a) = h'(b) = 0$.

This can be solved numerically (fastly!) with 1-dimensional finite elements.

Part II

Generalized chaos expansion

Generalized chaos expansion

For all j, let $e_{j,0} = 1, e_{j,1}, \dots, e_{j,n_j-1}$ be orthonormal functions in $L^2(\mu_j)$. We call *generalized chaos* a tensor of the form:

$$e_{\underline{\ell}}(x) = \prod_{j=1}^d e_{j,\ell_j}(x_j)$$

where $\underline{\ell} = (\ell_1, \dots, \ell_d)$ is a multi-index.

When the $e_{...}$ are (orthonormal) polynomials, we recover *polynomial chaos*.

Generalized chaos expansion

For all j, let $e_{j,0} = 1, e_{j,1}, \dots, e_{j,n_j-1}$ be orthonormal functions in $L^2(\mu_j)$. We call *generalized chaos* a tensor of the form:

$$e_{\underline{\ell}}(x) = \prod_{j=1}^d e_{j,\ell_j}(x_j)$$

where $\underline{\ell} = (\ell_1, \dots, \ell_d)$ is a multi-index.

When the *e*_{...} are (orthonormal) polynomials, we recover *polynomial chaos*.

Property

The subset of tensors that involve *exactly (resp. at least)* x_1 is an Hilbert basis of the corresponding space. Thus, for any centered function h:

$$\begin{split} h_1 &= \sum_{\ell_1 \geq 1} \langle h, e_{1,\ell_1} \rangle e_{1,\ell_1}, \qquad \quad h_1^{tot} = \sum_{\ell_1 \geq 1,\ell_2,\dots,\ell_d} \langle h, e_{\underline{\ell}} \rangle e_{\underline{\ell}} \\ D_1(h) &= \sum_{\ell_1 \geq 1} \langle h, e_{1,\ell_1} \rangle^2, \qquad \quad D_1^{tot}(h) = \sum_{\ell_1 \geq 1,\ell_2,\dots,\ell_d} \langle h, e_{\underline{\ell}} \rangle^2 \end{split}$$

N.B. This material is inspired from [Antoniadis, 1984, Tissot, 2012].

PDO expansions

Define PDO expansion as the generalized chaos expansion obtained with the eigenfunctions of the Poincaré differential operator.

Property

$$\begin{split} D_1(h) &= \sum_{\ell_1 \geq 1} \langle h, e_{1,\ell_1} \rangle^2 = \sum_{\ell_1 \geq 1} \frac{1}{\lambda_{1,\ell_1}^2} \langle \frac{\partial h}{\partial x_1}, e'_{1,\ell_1} \rangle^2. \\ D_1^{\text{tot}}(h) &= \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \langle h, e_{1,\ell_1} \dots e_{d,\ell_d} \rangle^2 \\ &= \sum_{\ell_1 \geq 1, \ell_2, \dots, \ell_d} \frac{1}{\lambda_{1,\ell_1}^2} \langle \frac{\partial h}{\partial x_1}, e'_{1,\ell_1} e_{2,\ell_2} \dots e_{d,\ell_d} \rangle^2. \end{split}$$

PDO expansions

Example of lower bound. Limiting ourselves to the first eigenfunction in all dimensions, and to first and second order tensors involving x_1 , we obtain:

A derivative-free PDO lower bound:

$$D_1^{ ext{tot}}(h) \geq \underbrace{\langle h, e_{1,1}
angle^2}_{ ext{lower bound for } D_1} + \sum_{i=2}^d \langle h, e_{1,1} e_{i,1}
angle^2$$

A derivative-based PDO lower bound:

$$D_1^{\text{tot}}(h) \geq \underbrace{C(\mu_1)^2 \, \langle \frac{\partial h}{\partial x_1}, e_{1,1}' \rangle^2}_{\text{lower bound for } D_1} + C(\mu_1)^2 \sum_{i=2}^d \langle \frac{\partial h}{\partial x_1}, e_{1,1}' e_{i,1} \rangle^2$$

Equality case: when h has the form

$$h(x) = \alpha_1 e_{1,1}(x_1) + \sum_{i=2}^{d} \alpha_i e_{1,1}(x_1) e_{i,1}(x_i) + g(x_2, \dots, x_d)$$

When using derivatives?

We must compute squared integrals $\theta = (\int g(x)d\mu(x))^2$, when g is equal to:

$$g_{\text{dir}} = h\phi_1, h\phi_1\phi_j, \dots$$
 or $g_{\text{der}} = \frac{\partial h}{\partial x_1}\psi_1, \frac{\partial h}{\partial x_1}\psi_1\phi_j, \dots$

for some functions $\phi_i, \phi_j, \psi_1, \ldots$

When using derivatives?

We must compute squared integrals $\theta = (\int g(x)d\mu(x))^2$, when g is equal to:

$$g_{\text{dir}} = h\phi_1, h\phi_1\phi_j, \dots$$
 or $g_{\text{der}} = \frac{\partial h}{\partial x_1}\psi_1, \frac{\partial h}{\partial x_1}\psi_1\phi_j, \dots$

for some functions $\phi_i, \phi_i, \psi_1, \ldots$

The reason why we should compute θ with / without derivatives is <u>numerical</u>. The sample estimate $\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} g(X^{i})\right)^{2}$, with X^{1}, \dots, X^{n} i.i.d. $\sim \mu$, verifies:

$$\hat{\theta} \approx \mathcal{N}\left(\theta, \frac{4\theta}{n} \operatorname{Var}_{\mu}(g)\right)$$

Hence, for one squared integral, using the derivative form can reduce estimation error when g_{der} is less variable than g_{dir} .

Particular cases

- For uniform distributions, PDO expansion = Fourier expansion
 - Indeed, the PDO is the Laplacian, whose eigenfunctions are trigo. functions
- For normal distributions, PDO expansion = PC expansion
 - This is the only case where PDO expansion = PC expansion

Weight-free derivative-based lower bounds

All the integrals above can involve derivatives by integrating by part. But this often induce weights; Here is an alternative to PDO, avoiding weights.

Weight-free derivative-based lower bounds

All the integrals above can involve derivatives by integrating by part. But this often induce weights; Here is an alternative to PDO, avoiding weights.

Assume that μ_j is continuous with pdf $p_j \in \mathcal{H}^1(\mu_j)$ vanishing at the boundaries but not inside, and such that $p_j' \not\equiv 0$ and $p_j'/p_j \in L^2(\mu_j)$. Denote:

$$Z_j(x_j) = (\ln p_j)'(x_j), \qquad I_j = \operatorname{Var}(Z_j(X_j)).$$

Then, by choosing $e_{j,1}(x_j) = I_j^{-1/2} Z_j(x_j)$, we have:

$$D_1^{ ext{tot}} \geq \underbrace{I_1^{-1}c_1^2}_{ ext{lower bound for } D_1} + I_1^{-1} \sum_{j=2}^d I_j^{-1}c_{1,j}^2$$

with

$$c_1 = \int h(x)Z_1(x_1)d\mu(x) = -\int \frac{\partial h(x)}{\partial x_1}d\mu(x)$$

$$c_{1,j} = \int h(x)Z_1(x_1)Z_j(x_j)d\mu(x) = -\int \frac{\partial h(x)}{\partial x_1}Z_j(x_j)d\mu(x) = \int \frac{\partial^2 h(x)}{\partial x_1\partial x_j}d\mu(x)$$

Weight-free derivative-based lower bounds

For normal variables $N(m_j, s_j^2)$:

$$D_1^{\text{tot}} \ge \underbrace{s_1^2 \left(\int \frac{\partial h(x)}{\partial x_1} d\mu(x) \right)^2}_{\text{lower bound for } D_1} + s_1^2 \sum_{j=2}^d s_j^2 \left(\int \frac{\partial^2 h(x)}{\partial x_1 \partial x_j} d\mu(x) \right)^2$$

Dist. name	Support	р	p Z	
Normal	\mathbb{R}	$\frac{1}{s\sqrt{2\pi}}\exp\left(-\frac{1}{2}\frac{(x-m)^2}{s^2}\right)$	$-(X-m)/s^2$	1/ <i>s</i> ²
Laplace	\mathbb{R}	$\frac{1}{2s} \exp\left(\frac{ x-m }{s}\right)$	$-\operatorname{sgn}(X-m)/s$	1/ <i>s</i> ²
Cauchy	\mathbb{R}	$\frac{1}{\pi} \frac{s}{(x-x_0)^2+s^2}$	$\frac{-2(x-x_0)}{(x-x_0)^2+s^2}$	$1/(2s^2)$

Improvements on existing works (in [Kucherenko and looss, 2017])

• For uniforms on [0,1] using the orthonormal function obtained from x_1^m , and an integration by part, we obtain:

$$D_1^{\text{tot}} \ge D_1 \ge \frac{2m+1}{m^2} \left(\int (h(1,x_{-1})-h(x)) dx - w_1^{(m+1)} \right)^2$$

where $w_1^{(m+1)} = \int \frac{\partial h(x)}{\partial x_1} x_1^{m+1} dx$. This improves on the known lower bound which has the same form, with the smaller multiplicative constant $\frac{2m+1}{(m+1)^2}$.

• For normal distributions, we improve on:

$$D_1^{\text{tot}} \geq D_1 \geq s_1^2 \left(\int \frac{\partial h(x)}{\partial x_1} d\mu(x) \right)^2.$$

N.B. Better bounds are obtained by adding orth. funct. of the form $\psi_1\psi_j$.

Weights and connexion with PC expansions

PDO expansion can be extended to weighted Poincaré inequalities,

$$\operatorname{Var}_{\mu_1}(h) \leq C \int_{\mathbb{R}} h'(x)^2 w(x) \mu_1(dx)$$

by solving $\langle h', e'_n \rangle_w = \lambda_n \langle h, e_n \rangle$ with $\langle h, g \rangle_w := \int h(x)g(x)w(x)\mu_1(dx)$.

Weights and connexion with PC expansions

PDO expansion can be extended to weighted Poincaré inequalities,

$$\operatorname{Var}_{\mu_1}(h) \leq C \int_{\mathbb{R}} h'(x)^2 w(x) \mu_1(dx)$$

by solving $\langle h', e'_n \rangle_w = \lambda_n \langle h, e_n \rangle$ with $\langle h, g \rangle_w := \int h(x)g(x)w(x)\mu_1(dx)$.

- ② Using weighted Poincaré inequalities has already been proposed in SA: [Song et al., 2019] choose w such that e_1 is a 1st order polynomial.
 - \rightarrow Except from 3 cases, the other eigenfunctions e_n are not all polynomials.

Weights and connexion with PC expansions

PDO expansion can be extended to weighted Poincaré inequalities,

$$\operatorname{Var}_{\mu_1}(h) \leq C \int_{\mathbb{R}} h'(x)^2 w(x) \mu_1(dx)$$

by solving $\langle h', e'_n \rangle_w = \lambda_n \langle h, e_n \rangle$ with $\langle h, g \rangle_w := \int h(x)g(x)w(x)\mu_1(dx)$.

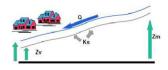
- ② Using weighted Poincaré inequalities has already been proposed in SA: [Song et al., 2019] choose w such that e₁ is a 1st order polynomial.
 → Except from 3 cases, the other eigenfunctions en are not all polynomials.
- There are exactly 3 cases where PDO expansions = PC expansions, i.e. where all eigenfunctions are polynomials [Bakry et al., 2014]:

Law	Interval	Polynomials	Weight
Normal	\mathbb{R}	Hermite	w(x) = 1
Gamma	\mathbb{R}_{+}	Laguerre	$w(x) \propto x^{\alpha-1}e^{-\alpha x}$
Beta	[-1, 1]	Jacobi	$w(x) \propto (1-x)^{\alpha-1}(1+x)^{\beta-1}$

Part III

An application

A case study for global sensitivity analysis



A simplified flood model [looss, 2011], [looss and Lemaitre, 2015].

Output: cost (in million euros) of the damage on the dyke

$$Y = 1_{S>0} + \left[0.2 + 0.8\left(1 - \exp^{-\frac{1000}{S^4}}\right)\right] 1_{S\leq 0} + \frac{1}{20}\left(H_d 1_{H_d>8} + 81_{H_d\leq 8}\right)$$

where H is the maximal annual height of the river (in meters), and S is the maximal annual overflow (in meters)

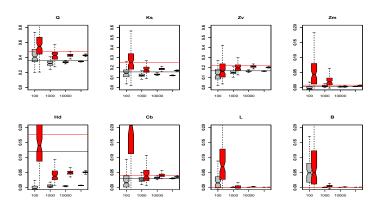
$$S = Z_v + H - H_d - C_b$$
 with $H = \left(rac{Q}{BK_s\sqrt{rac{Z_m-Z_v}{L}}}
ight)^{0.6}$

A case study for global sensitivity analysis

• 8 inputs variables assumed to be independent r.v., with distributions:

Input	Description	Unit	Probability distribution
$X_1 = Q$	Maximal annual flowrate	m ³ /s	Gumbel $\mathcal{G}(1013, 558)$,
			truncated on [500, 3000]
$X_2 = K_s$	Strickler coefficient	-	Normal $\mathcal{N}(30, 8^2)$,
			truncated on [15, $+\infty$ [
$X_3 = Z_V$	River downstream level	m	Triangular $\mathcal{T}(49, 50, 51)$
$X_4 = Z_m$	River upstream level	m	Triangular $\mathcal{T}(54, 55, 56)$
$X_5 = H_d$	Dyke height	m	Uniform $\mathcal{U}[7,9]$
$X_6 = C_b$	Bank level	m	Triangular $\mathcal{T}(55, 55.5, 56)$
$X_7 = L$	River stretch	m	Triangular $\mathcal{T}(4990, 5000, 5010)$
$X_8 = B$	River width	m	Triangular $\mathcal{T}(295, 300, 305)$

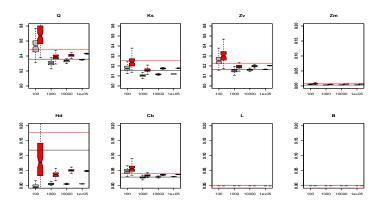
Illustration on the flood problem: PDO lower bounds without derivatives



MC estimate of PDO lower bound of (total) Sobol indices, for various sample sizes:

$$D_1^{ ext{tot}} \geq \underbrace{\langle h, e_{1,1}
angle^2}_{ ext{lower bound for } D_1} + \sum_{i=2}^d \langle h, e_{1,1} e_{i,1}
angle^2$$

Illustration on the flood problem: PDO lower bounds using derivatives



MC estimate of PDO lower bound of (total) Sobol indices, for various sample sizes:

$$D_1^{ ext{tot}} \geq \underbrace{C(\mu_1)^2 \, \langle rac{\partial h}{\partial x_1}, \, e_{1,1}'
angle^2}_{ ext{lower bound for } D_1} + C(\mu_1)^2 \sum_{i=2}^d \langle rac{\partial h}{\partial x_1}, \, e_{1,1}' e_{i,1}
angle^2$$

Conclusions on the application

- Lower bounds are easily computed, even for exotic input distributions
- The estimation error can be large for small sample sizes
 - Bootstrap confidence intervals are required
- The (estimated) lower bounds of the total Sobol' indices are often informative, i.e. larger than the (estimated) first order Sobol' indices
- Using derivatives (then DGSM) gives excellent results, even for small sample size cases

Part IV

Conclusions and perspectives

Take-home messages

- Polynomial chaos (PC) expansion is extended to tensor Hilbert bases
 - Gives lower bound for Sobol indices, with equality cases
- When derivatives are available, a good Hilbert basis is given by the eigenfunctions of the Poincaré Differential Operator (PDO expansion)
 - Suitable lower bounds for Sobol indices are obtained with first eigenvalues
 - Improves on existing results on derivative-based sensitivity measures
- PDO expansion can be computed fastly for various prob. distributions
 - 1-dimensional finite element methods
- PDO expansion ≠ PC expansion, except for the Normal distribution
 - Only two other exceptions, when using weights: Gamma & Beta.
 - For the uniform distribution, PDO expansion = Fourier expansion.

Perspectives

- To investigate finite sample properties of estimators
 - Reduce bias for small sample size in both PDO and PC expansions
- To adapt L¹ techniques for PDO expansions
 - In order to choose relevant terms (not only the first eigenvalues)
- To compare PDO and PC expansions in engineering problems

To go further into details, discover the related publication in Electronic Journal of Statistics.

Acknowledgements

- Aldéric Joulin, for fruitful discussions on differential operators
- OQUAIDO Chair
- ANR-3IA Artificial and Natural Intelligence Toulouse Institute

Thank you for your attention!

Antoniadis, A. (1984).

Analysis of variance on function spaces.

Statistics: A Journal of Theoretical and Applied Statistics, 15(1):59-71.

Bakry, D., Gentil, I., and Ledoux, M. (2014).

Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer, Cham.

Efron, B. and Stein, C. (1981).

The jackknife estimate of variance.

Hoeffding, W. (1948).

A class of statistics with asymptotically normal distribution.

Ann. Math. Statist., 19(3):293-325.

looss, B. (2011).

Revue sur l'analyse de sensibilité globale de modèles numériques. Journal de la Société Française de Statistique, 152:1–23.

looss, B. and Lemaitre, P. (2015).

A review on global sensitivity analysis methods.

In Meloni, C. and Dellino, G., editors, *Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications*, pages 101–122. Springer.

Kucherenko, S. and looss, B. (2017).

Derivative-based global sensitivity measures.

In Ghanem, R., Higdon, D., and Owhadi, H., editors, *Springer Handbook on Uncertainty Quantification*, pages 1241–1263. Springer.

Lamboni, M., Iooss, B., Popelin, A.-L., and Gamboa, F. (2013).

Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests. Mathematics and Computers in Simulation, 87:45–54.

Roustant, O., Barthe, F., and looss, B. (2017).

Poincaré inequalities on intervals - application to sensitivity analysis. *Electron, J. Statist.*, 11(2):3081–3119.

Sobol', I. (1993).

Sensitivity estimates for non linear mathematical models. Mathematical Modelling and Computational Experiments, 1:407–414.

Song, S., Zhou, T., Wang, L., Kucherenko, S., and Lu, Z. (2019).

Derivative-based new upper bound of Sobol' sensitivity measure. Reliability Engineering & System Safety, 187:142 – 148.

Tissot, J.-Y. (2012).

Sur la décomposition ANOVA et l'estimation des indices de Sobol'. Application à un modèle d'écosystème marin.

PhD thesis. Grenoble University.