Bootstrap – Bagging – Random Forests

Olivier Roustant

Mines Saint-Étienne

2017/11

Outline

Bootstrap

Aggregation, bagging and random forests

Warning

- This is only a very short introduction to bootstrap, aggregation and random forests, aiming at giving some insights to the future case study
- This has to be completed by your own reading on these topics, in particular Chapters 9 and 15 of [ESL]

Bootstrap

Purpose

- The idea of bootstrap is to resample in the data
 - → Allows creating variability without extra information.
 Etymology: To go up by pulling on the bootstraps (without extra force!)
 - → Allows simulating from an unknown distribution.

• Application to the case study 2015 Compute forecast intervals without assuming the normality of the residuals ε_t in the linear model with AR(2) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_p x_{p,t} + u_t$$
$$u_t = \phi_1 u_{t-1} + \phi_2 u_{t-2} + \varepsilon_t$$

Principle

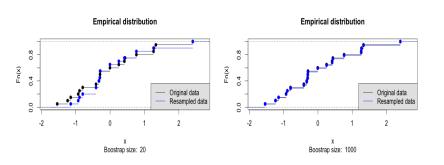
Denote \hat{F}_n the empirical distribution, i.e. the discrete distribution supported by the data $\{x_1, \ldots, x_n\}$, with uniform weights :

$$d\hat{F}_n(x) = \frac{1}{n}\delta_{x_1}(x) + \cdots + \frac{1}{n}\delta_{x_n}(x)$$

Assume that x_1, \ldots, x_n is a sample of F (an unknown distribution). Then If n is large enough, simulating from \hat{F}_n or F with be very similar.

Principle

<u>Ex.</u> Explain why if $U \sim \mathcal{U}(\{1, \dots, n\})$ then $x_U \sim \hat{F}_n$. Thus, simulating from \hat{F}_n is achieved by resampling the data (with replacement).

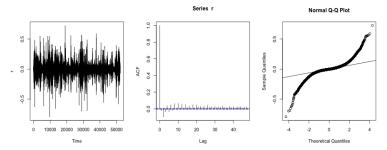


 $\rightarrow R \text{ code}$: sample(data, size = nboot, replace = TRUE)

Application to the case study 2015

Possible residuals ε_t are represented below.

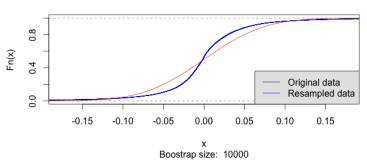
- → They look approx. independent (ignoring variance variations...)
- → They have fatter tails than the normal distribution ('leptokurticity')



Application to the case study 2015

Compare the cdf of bootstrapped residuals (drawn from \hat{F}_n) to the cdf of the Gaussian distribution (in red), here different from F.

Empirical distribution



Correlation of a bootstrapped sample

Since boostrapped data are drawn from the same data, they are correlated.

Ex. Let X_1, \ldots, X_n i.i.d. $(0, \sigma^2)$. Define:

$$X_1^* = X_{U_1}, \dots, X_B^* = X_{U_B}$$

boostrapped data, where U_1, \ldots, U_B are i.i.d. $\sim \mathcal{U}(\{1, \ldots, n\})$ and independent from X_1, \ldots, X_n .

Prove that X_1^*, \ldots, X_B^* are i.d. $(0, \sigma^2)$ but with $cor(X_i^*, X_i^*) = \frac{1}{n}$.

Correlation of bootstrapped sample means

<u>Ex.</u> Let X_1, \ldots, X_n i.i.d. $(0, \sigma^2)$ and let $\overline{X}_1^*, \overline{X}_2^*$ two sample means computed (independently) by bootstrap. Prove that

$$cor(\overline{X}_1^*, \overline{X}_2^*) = \frac{n}{2n-1} \approx 50\%$$

Aggregation, bagging and random forests

Bagging: Bootstrap + Aggregating

Principle. Consider a set of data z_1, \ldots, z_N .

- Obtain new data by bootstrapping the original data
 → each bootstrap sample Z₁^{*b},...,Z_N^{*b} gives a new learner
- Aggregate (here : average) the learners

Idea #1: Bagging is most useful for instable models

Notations

- $Z = \{(Y_n, X_n), n = 1, ..., N\}$: i.i.d. r.v. representing the data
- $\phi(x, Z)$: Prediction of y for a new x
- $\phi_A(x) = E_Z(\phi(x,Z))$: Aggregated prediction
 In Bagging, $\phi_A(x) \approx \frac{1}{B} \sum_{b=1}^{B} \phi(x,Z^{\star b})$

Idea #1: Bagging is most useful for instable models

Notations

- $Z = \{(Y_n, X_n), n = 1, ..., N\}$: i.i.d. r.v. representing the data
- $\phi(x, Z)$: Prediction of y for a new x
- $\phi_A(x) = E_Z(\phi(x, Z))$: Aggregated prediction
 In Bagging, $\phi_A(x) \approx \frac{1}{B} \sum_{b=1}^{B} \phi(x, Z^{\star b})$

Define, for given x, y:

- $e(x, y) = E_Z[(y \phi(x, Z))^2]$: The mean square error
- $e_A(x, y) = (y \phi_A(x))^2$: The aggregate error

Idea #1 : Bagging is most useful for instable models

Notations

- $Z = \{(Y_n, X_n), n = 1, ..., N\}$: i.i.d. r.v. representing the data
- $\phi(x, Z)$: Prediction of y for a new x
- $\phi_A(x) = E_Z(\phi(x,Z))$: Aggregated prediction
 In Bagging, $\phi_A(x) \approx \frac{1}{B} \sum_{b=1}^{B} \phi(x,Z^{\star b})$

Define, for given x, y:

- $e(x, y) = E_Z[(y \phi(x, Z))^2]$: The mean square error
- $e_A(x, y) = (y \phi_A(x))^2$: The aggregate error

Exercise. By interpreting e and e_A with risk and bias, show that

$$e_A(x,y) - e(x,y) = -\text{var}_Z(\phi(x,Z)) \le 0$$

Idea #2 : Bagging is improved by reducing correlation

<u>Fact.</u> The 'weak' learners $\phi(x, Z^{*b})$ are independent conditionaly to initial data $(X_1, Y_1), \dots, (X_n, Y_n)$, but not independent.

Idea #2: Bagging is improved by reducing correlation

<u>Fact.</u> The 'weak' learners $\phi(x, Z^{*b})$ are independent conditionaly to initial data $(X_1, Y_1), \dots, (X_n, Y_n)$, but not independent.

<u>Ex. #1.</u> The $\phi(x, Z^{*b})$ have common variance and correlation.

Idea #2: Bagging is improved by reducing correlation

<u>Fact.</u> The 'weak' learners $\phi(x, Z^{*b})$ are independent conditionaly to initial data $(X_1, Y_1), \dots, (X_n, Y_n)$, but not independent.

 $\underline{\mathsf{Ex.}\ \#1.}$ The $\phi(x, Z^{\star b})$ have common variance and correlation.

Ex. #2. Let B r.v. W_1, \ldots, W_B with common variance σ^2 and correlation $\rho \geq 0$. Then the variance of $\frac{1}{B} \sum_{b=1}^{B} W_b$ is :

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

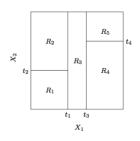
 \rightarrow All the more efficient as ρ is small.

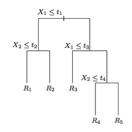
Principles of random forest

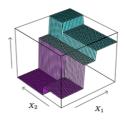
- Use non-linear and unstable weak learners
 - → Averaging of linear learners result in a linear learner!
 - → Unstable : see above 'bagging and unstability'
 - → Trees are good candidates
- Resample the observations as in bagging
- Resample the variables in order to decrease ρ ("feature sampling")

Trees in 1 slide (from [ESL, chapter 9])

Example with CART (Classification and Regression Trees).







Algorithm (from [ESL, Chapter 15])

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample Z* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

References

- ESL T. Hastie, R. Tibshirani and J. Friedman (2009), The Elements of Statistical Learning, Springer, 2nd edition, print 10.
- **BRE** L. Breiman (1994), Bagging Predictors, Technical Report 421, University of California at Berkeley.