A radial scanning statistic for selecting space-filling designs in computer experiments

O. Roustant⁽¹⁾, J. Franco⁽²⁾, L. Carraro⁽³⁾, A. Jourdan⁽⁴⁾

(1) Ecole des Mines de St-Etienne – (2) Total – (3) Telecom Saint-Etienne – (4) EISTI Pau

MODA-9, Bertinoro, Italy

Framework

- Scientific framework
 - Keywords: Computer experiments, space-filling designs, dimension reduction, goodness-of-fit
- DICE Consortium (Sept. 2006 Dec. 2009)
 - 5 industrial companies (TOTAL, Renault, IRSN, EDF, Onera : energy, automotive, nuclear and aerospatial engineering)
 - 4 academic partners (Ecole des Mines de St-Etienne, Univ. Aix-Marseille, Univ. Joseph Fourier, Univ. Paris 11)
 - Objective: to study costly simulators
 - Web site : http://www.dice-consortium.fr/

Supplementary material

→ R package "DiceDesign", available at http://cran.r-project.org/

Outline

- ◆ Motivations
- → The radial scanning statistic
- Applications
 - defect detection of SFDs
 - → selection of SFDs
- → Future research

Introduction - Framework

- Framework
 - First investigation of a costly deterministic simulator

$$y = f_{sim}(x_1, x_2, ..., x_d)$$

- Cubic region $x=(x_1,...,x_d) \in \Omega=[-1,1]^d, d=1, 2, ...,10, ... 20,...50,...$
- Objective
 - To study the phenomenon modeled by f_{sim} with few runs

Introduction - Assumptions

- Assumptions
 - Complexity of the phenomenon
 - ⇒ Non-linearities of f_{sim}
 - The effective dimension is << d
 - ⇒ Only few factors are influent (sparsity)

$$f_{sim}(x) = g(x_{i1}, ..., x_{ik}), k << d$$

⇒ Only few principal components are influent

$$f_{sim}(x) = g(b_1'x, ..., b_k'x), k << d$$

- Remark
 - The latter is standard for dimension reduction (as for Sliced Inverse Regression, see [Li, 1991])

Introduction - Consequences

- Consequences for designs
 - Complexity of the phenomenon
 - \Rightarrow Non-linearities of $f_{sim} \Rightarrow$ space-filling designs
 - The effective dimension is << d
 - ⇒ Only few factors are influent (sparsity)

$$f_{sim}(x) = g(x_{i1}, ..., x_{ik}), k << d$$

⇒ space-filling of projections onto factorial subspaces

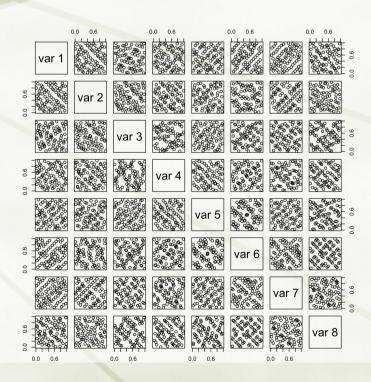
⇒ Only few principal components are influent

$$f_{sim}(x) = g(b_1'x, ..., b_k'x), k << d$$

⇒ space-filling of projections onto oblique subspaces

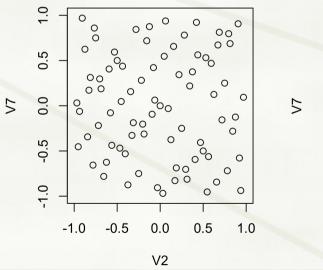
Introductory example

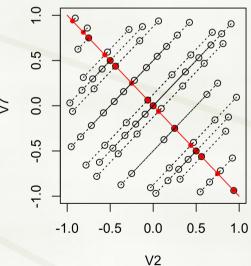
- A 8D example
 - $f_{sim}(x) = g(x_2, x_7), d=8$
 - Common approach in practice : use a space-filling design (SFD), for instance a 80 points Sobol sequence



Introductory example

- A 8D example
 - $f_{sim}(x) = g(x_2, x_7), d=8$
 - Space-filling design: 80 points Sobol sequence
 - \Rightarrow Space-filling is not so good in the subspace Vect(x_2, x_7)
 - \Rightarrow If the code is a function of $x_2 x_7$, only 16 different points! loss of information





Introductory example

OBJECTIVE

- ⇒ To detect automatically such defects
- ⇒ To select space-filling designs that are still space-filling in projection onto oblique subspaces
 - ⇒ more constraining than for LHDs or OAs
 - ⇒ to be precised in next slide

Objective

- Ideal objective:
 - There is a need to check good properties of projections onto any subspace spanned by b_1 'x, ..., b_k 'x
- Revised ideal objective:
 - To check space-filling properties of the projections onto any (oblique) 1-dimensional axis [spanned by one b'x]
- Realization:
 - To check space-filling properties of the projections onto any
 1-dimensional axis of the form :
 - $\beta_i x_i + \beta_j x_j$
 - $\beta_i x_i + \beta_j x_j + \beta_k x_k$
- 2D radial scanning statistic
 - 3D radial scanning statistic

A good benchmark

- Uniform designs
 - Advantage:Space-fillingonto projections
 - Main defaults : clusters, holes

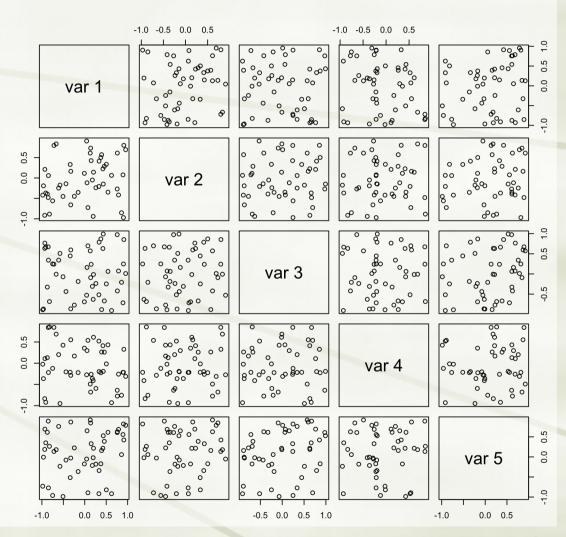
A good SFD?

advantages

without the

drawbacks of

uniform designs,
.../...

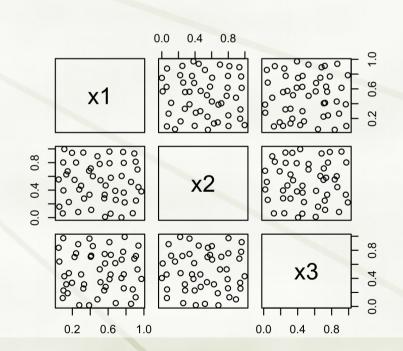


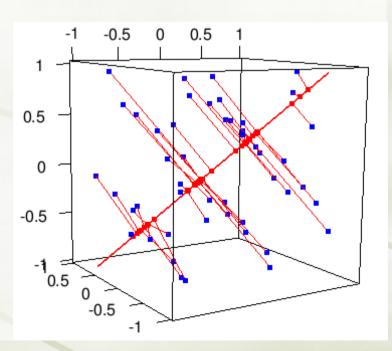
A good benchmark

A good SFD?

... and without other drawbacks!

A 3D randomized OA





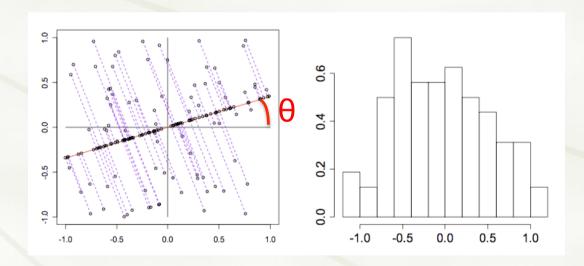
2nd part

* The radial scanning statistic

The idea

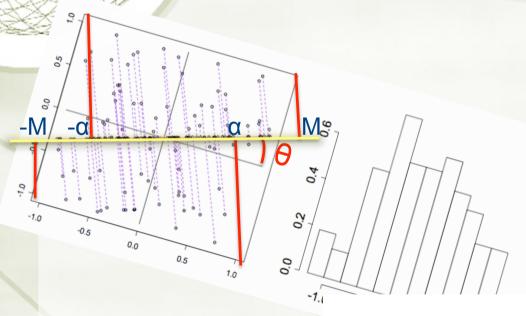
- Radial scanning Case of a 2D subspace
 - Scan angularly the domain
 - For each radial direction, project orthogonally the design points

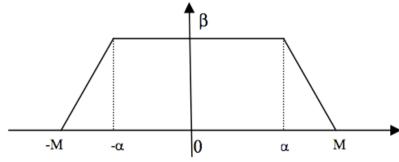
Are the projected points « well » distributed?



Distribution of a sum of uniforms

- The distribution of b'X is not uniform
 - Depends on the projections of the corners of [-1,1]^d onto Vect(b)





avec:

$$M = |\cos\theta| + |\sin\theta|$$

$$\alpha = |\cos\theta| - |\sin\theta|$$

$$\beta = \frac{1}{M + \alpha}$$

Distribution of a sum of uniforms

 Proposition (Laplace, 18th Century! – see a modern proof and discussion in [Elias and Shiu, 1987])

Proposition 1 If X is a random vector uniformly distributed over the hypercube $\Omega = [-1,1]^d$, and Z is the projection of X onto the straight line generated by a unitary vector a such that $a_j \neq 0, \forall j \in \{1,\ldots,d\}$, then the cdf of Z is given by:

$$F_Z(z) = \frac{1}{\prod_{j=1}^d 2a_j} \sum_{\mathbf{s} \in \{-1,1\}^d} \varepsilon(\mathbf{s}) \frac{(x + \langle \mathbf{s}, \mathbf{a} \rangle)_+^d}{d!}$$
(2)

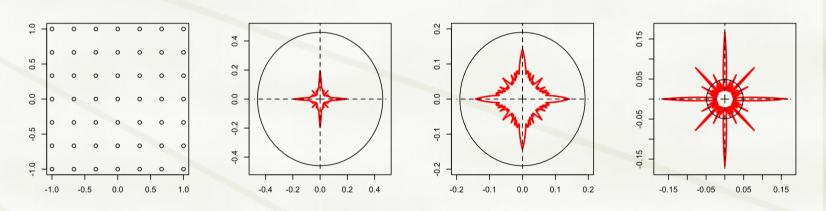
where $\varepsilon(\mathbf{s}) = \prod_{j=1}^{d} s_j$, < .,. > is the usual scalar product and $y_+ = \max(y,0)$. As a result, for a given axis, Z admits a piecewise linear density whose nodes correspond to the projections of the domain corners.

Mathematical formulation

- Assumption
 - H₀ : « x⁽¹⁾, ..., x⁽ⁿ⁾ are a sample of the Uniform distribution »
- Formulation
 - Let b be one direction in [-1,1]d
 - Let F_b be the distribution of projections b'X, with X ~U([-1,1]^d)
 - Question :
 - « Are the projections b' $x^{(1)}$, ..., b' $x^{(n)}$ drawn from F_b ? »
 - Equivalently: « Are $F_b(b'x^{(1)})$, ..., $F_b(b'x^{(n)})$ uniformly distributed? »
 - ⇒ Goodness-of-fit problem for the uniform distribution

Selecting a goodness-of-fit statistic

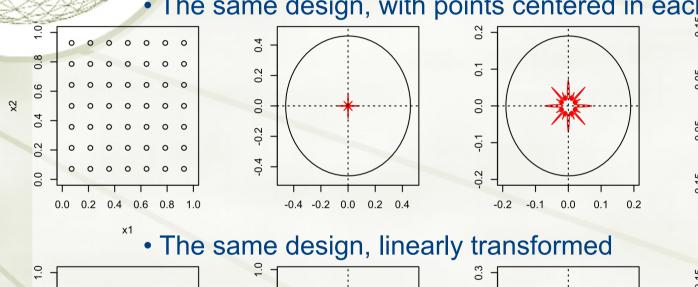
- Objective: to select a GOF statistic for the uniform distribution that detects alignments and clustering
 - Statistics based on CDFs (KS, CVM) usually fail, statistics based on « spacings » do it, such as Greenwood ([L'ecuyer, Simard, 2007])

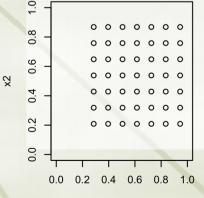


2D RSS based on : CVM (left), KS (middle), Greenwood (right)

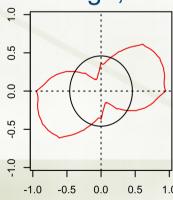
Robustness to domain misspecifications

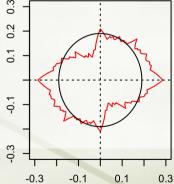
- Another feature of the statistics based on spacings
 - much less sensitive to domain misspecifications
 - The same design, with points centered in each cell

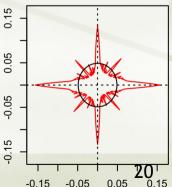




x1







-0.05

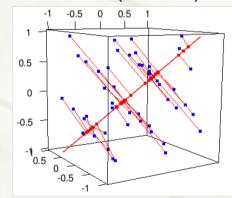
0.05

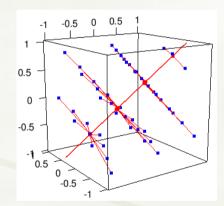
-0.15

Connected work

Spectral test

- Context: random numbers generators testing
- Statistic : maximal distance of points contained in oblique parallel planes
- → Detects perfect alignements (right), but not clusters (below)



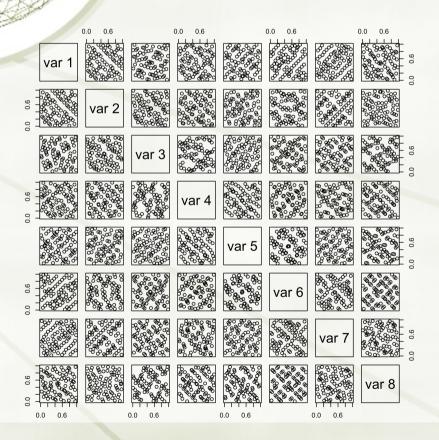


References

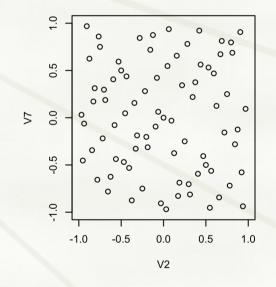
- Knuth, D. (1997). The Art of Computer Programmig, Volume 2: Seminumerical Algorithms, 3rd edition. Addison-Wesley.
- Ripley, B. (1987). Stochastic Simulation. Wiley.

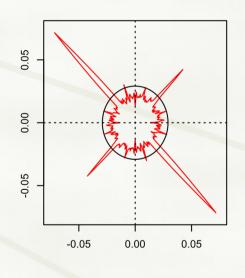
3rd part * Applications 22

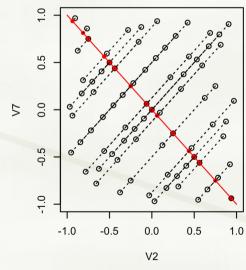
- Let us take again the 8D example
 - Space-filling design: 80 points Sobol sequence



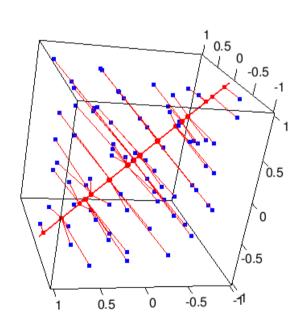
- 8D example (following) 2D RSS
 - the worst case is for the pair of dimensions (2,7)
 - in this 2D factorial subspace, the worst direction is ≈ (1,-1)







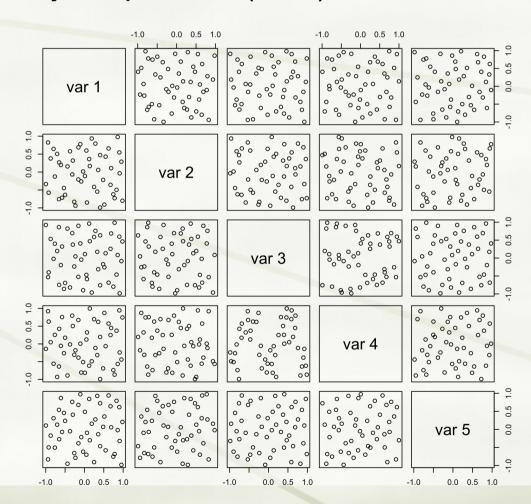
- 8D example (following) 3D RSS
 - the worst case is for the triplet of dimensions (1,2,7)
 - in this 3D factorial subspace, the worst direction is ≈ (0,1,-1) (same problem detected)



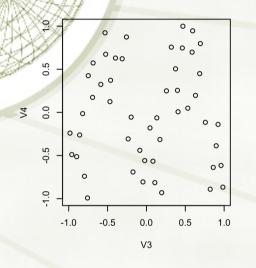
Low Discrepancy Sequences (LDS)

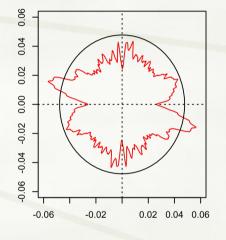
Sobol

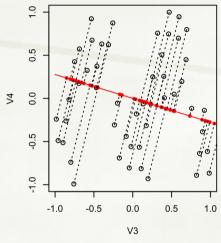
Owen scrambling



Low Discrepancy Sequences – 2D and 3D RSS





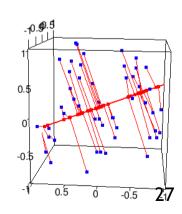


In 2D

- worst subspace : (3,4)
- worst direction ≈ (0.96, -0.26)

In 3D

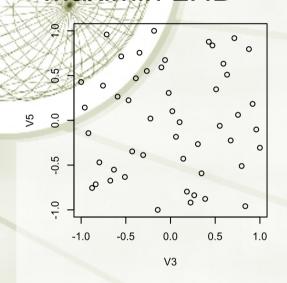
- worst subspace : (1,3,4)
- worst direction ≈ (-0.14, 0.93, -0.33)

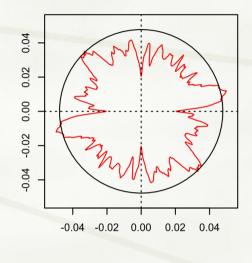


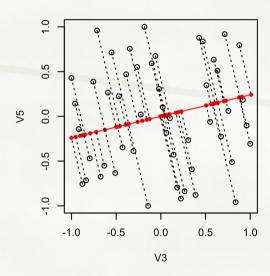
Latin hypercube (LH) designs

-1.0 -0.6 -0.2 0.2 Maximin LHD V1 V4 -1.0 -0.6 -0.2 0.2 -1.0 -0.6 -0.2 0.2 -1.0 -0.6 -0.2 0.2

Maximin LHD





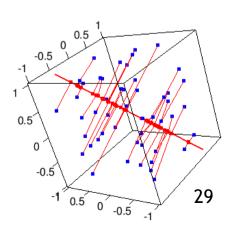


In 2D

- worst subspace : (3,5)
- worst direction $\approx (0.97, 0.23)$

In 3D

- worst subspace : (3,4,5)
- worst direction ≈ (-0.31, 0.69, 0.64)



Selection of SFDs

Comparison of 8D SFDs of size 80

Table 1 Worst value of Greenwood statistic for 8-dimensional SFDs of size 80

Design type ^a	Statistic value ^b
Uniform	0.039 (0.003)
Maximin Latin hypercube	0.048
Audze-Eglais Latin hypercube	0.037
Halton sequence	0.244
Faure sequence	0.161
Sobol sequence	0.101
Sobol sequence, with Owen scrambling	0.041 (0.006)
Sobol sequence, with Faure-Tezuka scrambling	0.088 (0.010)
Sobol sequence, with Owen + Faure-Tezuka scrambling	0.041 (0.006)
Strauss	0.040 (0.004)

^a LHDs are taken from http://www.spacefillingdesigns.nl, Halton and Sobol sequences are computed with the R package randtoolbox (http://www.r-project.org). ^b For stochastic designs, the first number is the mean of the results over 100 simulations, and the second (into brackets) their standard deviation.

Future research

- * Statistical issue
- Higher dimensions

Decisional issues

- Multiple testing framework
 - multiple pairs (triplets) of dimensions
 - multiple angles
 - strong correlation!

- Partial solution
 - consider a global statistic over directions, such as: sup/inf
 - → the multiple testing issue over dimensions remains...

Future research

- Radial scanning in higher dimensional subspaces
 - Visualization is no longer possible
 - Computational cost
 - Optimization techniques
 - → Normal approximations ? (away from factorial subspaces)
- Other ideas
 - Radial scanning of 2D (or higher) subspaces

Acknowledgements

We wish to thank A. Antoniadis, the members of the DICE Consortium (http://www.dice-consortium.fr), the participants of ENBIS-DEINDE 2007, as well as two referees for their useful comments. We also thank Chris Yukna for his help in editing.

THANK YOU FOR YOUR ATTENTION